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The theory of  collection-efficiency measurements  (under steady-state conditions) at double-channel 
electrodes has been extended to include the effects of  homogeneous kinetics. In particular first- and 
second-order decompositions of  the species electrogenerated at the upstream electrode have been 
examined. These problems have been treated numerically using the backwards implicit finite difference 
method.  This theory is readily generalized to allow for more complicated homogeneous chemical 
reactions. 

1. Introduct ion 

The double-channel electrode arrangement (Fig. 1), 
pioneered by Gerischer [1], is a valuable approach to 
the study of intermediates and products of electrode 
reactions. The basis of such investigations is as 
follows. A solution species, A, passes over the 
upstream generator electrode where it is oxidized (or 
reduced) to a species B, i.e. 

A + n e - ~ - B  

The species B is then transported to the downstream 
detector electrode where it is analysed ampero- 
metrically, generally via reduction (or oxidation) back 
to A. The experiment is quantitatively characterized 
by the so-called "collection efficiency", N, given by 

N = Idet/Igen (1) 

where Ig~n and Iaet are the currents at the generator and 
detector electrodes, respectively. In particular the 
collection efficiency is lowered with respect to its value 
when B is stable if B decays in the gap between the 
electrodes. We have explored elsewhere the conse- 
quences of heterogeneous reaction of B on the surface 
of the gap [2]; in this paper we develop a generally 
applicable theory for the case of homogeneous decay. 

Early work on double channel electrodes by 
Matsuda et al. [3-5] relies on the use of the Leveque 
approximation [6] in which the parabolic Poiseuille 
flow within the channel is linearized near the cell walls. 
This restricts the application of the early theory to 
conditions and geometries such that 

Vr---b-b >> 1 (2) 
Ddxl 

where Vf is the volume flow rate, D is the diffusion 
coefficient of the species of interest and b, d and x~ are 
defined in Fig. 1. This limitation reduces the sensitivity 
and range of application of double channel electrodes. 
Accordingly we developed a theory of double-channel 
electrodes embracing all practical flow rates and cell 

geometries [7]. This eliminated the necessity of adopt- 
ing the Leveque approximation by utilizing a numeri- 
cal method (the backward implicit finite difference 
method) which allowed the parabolic character of the 
flow to be retained. In this way collection efficiencies 
were calculated for kinetically stable species as a func- 
tion of electrode potential for both reversible and 
irreversible electron transfers; good agreement with 
experiment was found. In this paper we extend these 
calculations to allow for homogeneous decay of B. 
Specifically first- and second-order decompositions 
are examined. It is shown that these are readily 
and simply generatised to allow for more complex 
mechanistic chemistry. 

2. T h e o r y  

The steady-state mass transport equation governing 
the convective-diffusion of a kinetically stable species 
in a channel cell in [6, 8], using the coordinate system 
of fig. 1, is given by 

DA o2[A] 0[A] 
@---5- - v~ ~3x - 0 (3) 

where D A is the diffusion coefficient, [A] is the con- 
centration of A, and vx the solution velocity in the 
x-direction: 

v~ (6 I~-) (1 - 

The range of validity of Equation 3 in respect of "edge 
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Fig. 1. The double-channel electrode geometry. 
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effects" and other assumptions has been thoroughly 
examined [6, 8, 9]. 

In the double-electrode experiment outlined above, 
the product of the reaction at the upstream electrode, B, 
undergoes kinetic decay. Thus the transport equation 
for this species becomes 

DB 632[B] 63[B] kn[B] n ~-- 0 (5) ay-- ~ - v~ a--~--  

tbr nth order kinetics. Equations 3 and 5 are soluble 
provided appropriate boundary conditions are speci- 
fied. These are as follows: 
Upstream qfi the generator  electrode 

x = 0; [A] = [A]*; [B] = 0 (6) 

where [A]* is a bulk concentration. 
A t  the generator electrode surface (0 < x < & ;  y = O) 

t, 
8[A] 63[B1 0 (7) 

~,' D A - - ~  V ~  + DB 0y = 

and <, 

,, [A]/[B] = exp (0) (8) 

where we have assumed a reversible redox process 
(standard electrode potential, E ~ and the normalized 
potential, 0 = ( F / R T ) ( E  - E ~ 

A t  the surface o f  the 'gap" (x  I < x < x2; y = O) 

a[A] 8[B] 
= = 0 (9) 

63y" 63y 

A t  the detector electrode (x2 < x < x3; y = O) 

[B] = 0 (10) 

where we have assumed the reduction (oxidation) of B 
back to A is transport-limited. 
A t  the wall  o f  the cell (O < x < x3; y = b) 

0[A] O[B] 
- = o ( i 1 )  

c~), 63y 

The collection efficiency, N, is given by 

/det 
N = - -  

.~3 63[B] . 63[A] d x )  

-- (~ .. ..o / 

(12) 

The convective-diffusion Equations 3 and 5 for A and 
B have been solved analytically by Matsuda [4] in the 
case of first-order kinetics only to yield collection 
efficiencies as a function of electrode geometry. As 
alluded to above, this approach involves the linear- 
ization of the velocity profile, %, viz 

v ,  --. t .-b--dlt.  

This is the Leveque approximation [10] and, com- 
pared with Equation 4, it is clearly valid in the region 
y ~ b or, equivalently, according to [61, where 

Ddx ,  ~ Vfb (14) 

In order to produce results of a more general nature 
and, novelly, to permit the extension of the theory to 
second-order kinetics (and beyond to complex mech- 
anisms), we have retained the full parabolic velocity 
profile, described by Equation 4, by using the back- 
wards implicit finite difference method. We proceed as 
previously described in [7] using the same notation. 
The cell is divided into three regions (0 < x < x~; 
xl < x < x2; x2 < x < x3) and the backward 
implicit method is applied to each in turn. For each 
region, i(i = 1, 2 or 3), the numerical solution involves 
covering the x - y  plane with a finite difference grid of 
dimension J x K~. Values o f J a n d  Ki are chosen such 
that the solution converges to the required accuracy. 
In the calculations described J = 500, K~ = I000 are 
satisfactory in the absence of kinetics: increasingly 
larger values are needed as k, increases. 

Increments are, in the x-direction, Ax, and in the 
y-direction Ay, where 

yj = ,jAy ( j  = 0, 1 . . .  J); Ay = b / J  (15) 

xk = k A x  (k = 0, 1 . . . K ) ; k x  = xi /K) (16) 

xi is x~, x 2 - xl or x 3 - x2 in the appropriate region. 
Derivatives are approximated to 

8gM M M gj,,:+, -- g)~k 0g M M 
__ gy+l,k+t -- gj, k+~ 

63x A x  ' 63y A y  

(I7) 

(18) 
632gM M M M gj.-i,k+, -- 2gj, k+~ + gj+l,k+~ 
63y2 (Ay)2  

where gM are normalized concentrations, 

gA = [A]/[A],;gB = [B]/[A]*. (19) 

We have previously shown [71 how this approach 
leads to a ( J -  1) x ( J -  1) matrix equation, for 
each of the species M = A or B, of the form 

"bl c�93 0 

a 2 b 2 c 2 0 

o aj bj q o 

as_2 b j_2 e j_2 

0 a j _  i bj  _ 1 

- d i  "~. 

i 

4 t  
i 

�9 1 

d._. j 
t . . d j - I  

HI 

U2 

u; 

U j _  2 

b/j_ I 

(20) 

where the matrix elements are tabulated in the Appen- 
dix. The solution of the equations (in [7]) using an 
iterative procedure, also described previously in [11], 
yields the concentration profiles, g~.k, over the whole 
x - y  grid. The collection efficiency is then determined 
using Equation 12. 

The computations were carried out via a 
FORTRAN 77 program executed on a VAX 1 t/785 
mainframe computer, using N A G  I l library routines. 
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Fig. 2. The concentration profile of A within the channel flow cell 
for the no-kinetics case, calculated using the parameters: b = 0.04 cm, 
x~ = 0.3cm, x2 = 0.6cm, x3 = 0.8cm, D = 7.6 x 10 6cm2s-L 
Note that the concentration profile is limited to the region 
0 < y < b/2. 

3. Results and discussion 

The numerical  approach  to the solution o f  the double- 
channel  electrode convective-diffusion equat ions 
produced  concentra t ion profiles, M g),k, as indicated 
above. Typical  results can be seen in Figs 2 and 3 
which were generated for the no-kinetics (k, = 0) 
case. Figure 2 shows, as expected, that  A is depleted in 
the vicinity o f  the generator  electrode. This depletion 
is then partially relaxed in the zone o f  the gap by 
t ranspor t  o f  A f rom bulk. Finally the detector elec- 
t rode converts  B back to A thus restoring the con- 
centrat ion o f  the latter to its bulk value at and near the 
surface o f  this electrode. Figure 3 shows the corre- 
sponding B profile. The in t roduct ion o f  kinetics 
produced  analogous  profiles: Figs 4 and 5 relate to the 
specific case o f  first-order kinetics (kl = 10s - l )  and 
were computed  using the parameters  specified in the 
figure legend. The loss o f  A, as compared  to the 
no-kinetics case, th rough  homogeneous  decay is 
evident. 

We consider next our  results for  first-order kinetics. 
Calculations were performed for a cell o f  geom- 
etry xl = 0.233cm, x2 = 0.313cm, x3 = 0.768cm, 
b = 0.04cm, w = 0 .6cm and d =  0 .4cm and 
for species with diffusion coefficients DA = DB = 
7.6 x 10-6cm2s -i .  The variat ion o f  I~e~ and I~t as 0 
was varied th rough  the reversible vol tammetr ic  wave 
on the generator  electrode was examined. Figure 6 
shows plots o f  Ia0t against Ige, for  various rate con- 
stants, k~ = 0, 0.001, 0.1, 0.5 and 1.0s -1. A linear 
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Fig. 3. The concentration profile of B within the channel flow cell 
for the no-kinetics case. Note that the concentration profile is 
limited to the region 0 < y < b/2. 
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Fig. 4. The concentration profile of A within the channel flow cell 
for the first-order kinetics (k I = 10.0s -1) case. The following 
parameters were used in the calculation: b = 0.04cm, 
x t = 0.233cm, x2 = 0.313cm, x 3 = 0.768cm, D = 7.6 x 
t0-6cm 2 s-L Note that the concentration profile is limited to the 
region 0 < y < b12. 

relationship is, as expected, observed and the slopes 
o f  the lines correspond to the measured collection 
efficiency under  these conditions. 

Ma t suda  has calculated [4] the expected collection 
efficiency in the case o f  first-order kinetics under the 
assumption that  the Leveque approximat ion  is valid. 
With  this assumption the collection efficiency is found 
to be a unique (geometry independent) function o f  the 
dimensionless rate constant ,  

(21) 

where ~, = k,[A]*" 1, and simple approximate  
equat ions for the N//s L relationship result: 

N/No = e x p [ - a ' / ~  + b'/s 4 - c ' / ~ ]  (22) 

N / N  o = e x p [ - a "  + b"Is - c"R~] (23) 

where Equat ion  22 is valid for 0.08 < N / N  0 < 1 and 
Equat ion  23 for  0.002 < NIN0 < 0.1. The coef- 
ficients a ' ,  b', e', a", b" and c" depend upon  electrode 
geometry and have been tabulated [4]. 

Figures 7 and 8 show how the collection efficiency 
varies with flow rate for the cell geometry specified 
above. Figure 7 relates to a first-order rate constant  o f  
1 s -  L Clearly as the flow rate is reduced more  B is lost 
before it arrives at the detector electrode and thus the 
collection efficiency falls. Also shown in Fig. 7 is the 

o.8! 
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Fig. 5. The concentration profile of B within the channel flow ceil 
for the first-order kinetics (k~ = 10.0s i) case. The same param- 
eters were used in the calculation as for Fig. 4. Note that the 
concentration profile is limited to the region 0 < y < b/2. 
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Fig. 6: Plots of/de t against I~ .  for the case of first order kinetic decay 
of B, with k I = 0.0, 0.001, 0.1,0.5 and 1.0 s ~l, calculated for the cell 
geometry specified in the text. 

behaviour calculated according to Matsuda's approxi- 
mate theory. It can be seen that in the limit of fast flow 
rates - where the Leveque approximation holds 
best - the two treatments agree. However, at lower 
flow rates the Matsuda treatment underestimates the 
collection efficiency. This error results from the fact 
that the Leveque approximation over estimates the 
solution velocity, v~, away from the electrode. Thus 
the species B, under this approximation, is transported 
out of the cell before it can diffuse to the detector 
electrode. At higher flow rates, the diffusion layer is 
thin, the species B remains in the region y ~ b, and 
the two treatments converge. This effect is more 
dramatic in the case of slower kinetics. Figure 8 shows 
the equivalent plot to Fig. 7 but for a rate constant of  
0.001 s-L Here the Matsuda theory predicts a slight 
decrease of N with decreasing flow rate. However, the 
convective behaviour described above is enough to 
induce the opposite trend and N actually increases as 
the flow drops - an effect we have previously seen in 
the case where B is stable (no-kinetics) [7]. The results 
under conditions where the Leveque approximation is 
valid can be summarized by fig. 9 which shows a 
'working curve' relating N to /~.  This allows the 
analysis of all experimental data gathered under con- 
ditions where this approximation holds. Clearly from 
Figs 7 and 8, outside of these limits, experimental 
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Fig. 7. The variation of  the collection efficiency with the solution 
flow rate for the channel cell geometry specified in the text and 
k~ = 1.0s- ' .  The solid line shows the results of  the backwards 
implicit calculations whereas the dotted line shows the approximate 
theory of Matsuda [4]. 
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Fig. 8. The variation of the collection efficiency with the solution 
flow rate for the channel cell geometry specified in the text and 
k~ = 0.001 s - t .  The solid line shows the results of  the backwards 
implicit calculations whereas the dotted line shows the approximate 
theory of  Matsuda [4]. 

results must be analysed by the full computations 
outlined above. 

We now turn to the consideration of the problem of 
the second-order decay of B of which we are unaware 
of any previous work. Figure t0 shows plots of [d~ 
against Ige, for various rate constants, k2 = 0, 105, 
5 x 105, 5 x 106mol-lcm3s -j calculated using the 
same parameters as specified for the first-order case 
above. In this case a non-linear relationship is 
apparent: the higher the current density on the gener- 
ator electrode the greater the effect of the homogeneous 
kinetics and, although N monotonically increases with 
Igen, d]'~et/dIgen, steady falls. Clearly then N is a func- 
tion of 0 so that no universal working curve, even 
under Leveque conditions, can be given. However 
Fig. 11 shows the experimentally most convenient plot 
of N against /(2 for the particular case where the 
generator electrode is held a potential corresponding 
to the transport limited conversion of A to B under 
Leveque conditions for an electrode of the geometry 
specified for Fig. 10. 

From the theory given above it is clear that the 
quantitative description of double-channel electrodes 
for the study of electrode reaction mechanisms can be 
readily achieved using the backwards implicit finite 
difference method. In particular the extension :,:o com- 
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Fig. 9. A 'working curve' relating the: collectiort efficiency to the 
normalized rate constant/s under conditions where the Leveque 
approximation holds, 
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Fig. 10. Plots of Id~ L against Ig~, for the case of second-order kinetic 
decay of B, with k 2 = 0, 105, 5 x 10 s, 5 x 106mol-lcm3s -t 
calculated for the cell geometry specified in the text. 
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Fig. 11. A 'working curve' relating the collection efficiency to 
the normalized rate constant /72 under conditions where the 
Leveque approximation holds and where the generator electrode is 
potentiostated at a value corresponding to the transport limited 
conversion of A to B. 

p lex  e l e c t r o d e  r e a c t i o n  m e c h a n i s m s  s h o u l d  p r e s e n t  no  
c o n c e p t u a l  o r  c o m p u t a t i o n a l  p r o b l e m .  
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Appendix -- The backward implicit method matrix 
equations 

W e  have  seen a b o v e  t h a t  the  a p p l i c a t i o n  o f  the  b a c k -  

w a r d  imp l i c i t  m e t h o d  resu l t s  in a ( J  - l )  x ( J  - 1) 
m a t r i x  e q u a t i o n  o f  the  f o r m  

d l  

4 

4 

ds-2  

_ d j - 1  . 

r b l  ci 0 

a2 b2 c2 

= 0 aj bj 

a j_2 

0 

cj o 

b j - 2  C J - 2  

as_ 1 b: _ l 

b/I 

1"12 

us 

~ 

U j _  2 

_ U  J--1  

T h e  v a r i o u s  m a t r i x  e l emen t s  n o w  need  to  be  specif ied.  
These  a re  u n c h a n g e d  f r o m  those  speci f ied  in [7], in  

r e spec t  o f  the  c o r r e s p o n d i n g  ' n o - k i n e t i c s '  p r o b l e m  
excep t  as  specif ied be low:  
Z o n e  o f  the genera tor  e lectrode (0 < x < xL) 

21g~,k+l 
di a" = g~l,k + 

1 + e x p ( - - 0 ) ;  

(2 + exp  ( 0 ) ) .  
b ) = 1 + 2 , ( 1  + e x p ( 0 ) ) '  

d~ B g ~ L k + ,  (~c,~(Ay)2g~,k/D); 
= g,.k + )~ (1 + exp  (0)) 

(1 + 2 exp  (0)) 
b~ = 1 + 2 ~  

(1 + exp  (0) 

4B.k = g~,k -- (k*:(AY)zg~,k/D) 

Z o n e  o f  the gap (xL < x < x2) 

d ,  A = 

4 * =  g2 ; 
b A = 2~ + 1; 

= 24; + 1; 

de = g,8,k - (V*, (Ay)2g~,k/D); 

b~ = 2~ + I; 

4"  = g~k --  (k* , (Ay)2g~k/D);  

= 2;o + 1 

Z o n e  o f  the de tec tor  e lectrode (x2 < x < x3) 

B , 
di ~' = g~l.k + 21g1,~+1, 

b a = 21 + 1; 

4 = 

b a = 2 2 s + 1 ;  

dy = g l B g -  (ffC*l(Ay)2g~,k/D); 

by = 22~ + 1; 

4 s = g~,k - (k*,(kY)2g~,k/D); 

b~ = 2 ) o , + 1  

w h e r e / ~  = k . [ A ] , " - ' .  
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